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Abstract. We present a theory for the surface effect in d-wave superconductors. The quasi-
particles in a superconductor occupying a half-space are described by the Bogoliubov–de Gennes
equation. The asymptotic forms of the wave functions of the quasiparticles at large distances
from the surface are discussed. This is the basic problem in solving the equation. We also
review our recent results on the{100}- and{110}-surface effects in d-wave superconductors.

It is considered that the high-Tc superconductors are tight-binding systems [1]. The wave
packet of each electron is confined to the space of a few atoms. Near the surface of such a
superconductor, the wave functions of the electrons should be strongly deformed from that
in the interior. In a junction between the high-Tc superconductors, the tunnelling probability
of the particles depends on their wave functions near the surface. It is therefore reasonable
that there should be remarkable interface effects in the phenomena of tunnelling in high-Tc
superconductors.

Since the wave functions of electrons are confined to small regions, the short-range
Coulomb repulsion between electrons should be very strong. Thereby, electron pairing on
the same atom (corresponding to the s-wave component) should be substantially suppressed.
It is acceptable that the predominant pairing component in high-Tc superconductors should
have d-wave symmetry.

In high-Tc superconductors, the current carriers are considered to move in the copper–
oxygen planes since the coupling between different layers is quite weak. For theoretical
study, one usually uses a two-dimensional tight-binding model to describe the system [2].
The quasiparticles in an inhomogeneous superconductor are described by the Bogoliubov–de
Gennes (BdG) equation [3]. A major task of theoretical study is to solve the BdG equation.
We will discuss some basic problems encountered in solving the BdG equation. This is
helpful for studying surface effects for more general cases. In addition, we will also review
our recent results concerning the{100}- and{110}-surface effects [4, 5].

For simplicity, we consider here a semi-infinite square lattice with a straight boundary.
Along the direction parallel to the boundary, the wave functions of the quasiparticles can
be expanded in terms of plane waves. The unknown parts depend only on the coordinate in
the normal direction. Therefore, the surface problems can be reduced to one-dimensional
ones. In the present case, the BdG equation (defined for the one-dimensional chain) reads∑

j

Hijψ(j) = Eψ(i) (1)
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whereHij (a 2× 2 matrix) is the Hamiltonian,ψ(j) (a two-component spinor) is the wave
function of the quasiparticles at coordinatej in the direction normal to the surface, andE
is the corresponding eigen-energy.

To solve equation (1), one should know the asymptotic behaviours of the wave functions
at large distances from the surface. Generally, there are two kinds of state: the bound states
whose wave functions are confined to a region near the surface, and the free states in
which the quasiparticles can move through the whole system. In the interior, since the
system is homogeneous, the wave function of a free quasiparticle would approach to the
plane wave. However, each energy level is degenerate. The energy of the free particles is a
function ofkx andky , which are respectively the components of the momenta normal to and
parallel to the boundary. As a simple example, one may consider the system with a{100}
surface [4]. For givenky , the plane waves of momentakx and−kx have the same energy
E(−kx) = E(kx). Even at lower energy levels, we haveE(qx) = E(kx), but qx 6= ±kx .
For the case of a tilted boundary, the degeneracy is more complicated. Therefore, at large
distances, the wave function of any free quasiparticle should be a linear superposition of
those degenerate plane waves. To analyse the superposition, we need to recognize the
outgoing and incoming waves. They are distinguished by the sign of their group velocities,
v(kx) = dE(kx)/dkx . The outgoing and incoming waves have positive and negative group
velocities, respectively. For the sake of description, we will use the subscriptsα, β, . . . to
denote the incoming waves andµ, ν, . . . to denote the outgoing waves. An incoming wave
after reflection by the surface can generate all of the components of the outgoing waves.
Thus, an eigenfunction with an incoming wave of momentumkα behaves as follows:

ψα(j)→ i√
2

[
φα(j)−

∑
µ

Sαµφµ(j)

]
asj →∞ (2)

where i2 = −1, theφs (the wave functions of the plane waves) are the solutions to the
homogeneous system, and the coefficientSαµ represents the amplitude of the outgoing wave
of momentumkµ. Note that, at an eigen-energy, the number of incoming waves is the same
as that of the outgoing waves. Therefore, all of theSαµ compose a square matrix. It
is unitary, as required by the particle-conservation law [6]. We put the factor 1/

√
2 in

equation (2) only for convenience—to ensure that the wave functionsψα and theφs satisfy
the same normalization condition:∑

j

ψ†α(j)ψβ(j) = δαβδ(Eα − Eβ). (3)

In some special cases, the system is invariant under time reversal; the HamiltonianHij
is real. We can thereby obtain the symmetric matrixS by appropriately ordering theφα and
φµ, and we can write it as

S = T ′T (4)

whereT is a unitary matrix, andT ′ is the transverse ofT . The eigenfunctions can be taken
asf (j) = T ∗ψ(j) (with T ∗ the complex conjugate ofT ):

f (j)→ i√
2

[T ∗φin(j)− T φout(j)] as j →∞ (5)

whereφin(j) andφout(j) are incoming and outgoing wave functions, respectively, and we
have denoted them in vector form:φ†in(j) = [φ†α(j), φ

†
β(j), . . .], etc. Fortunately, the

validity of equation (4) corresponds toφ∗in(j) = φout(j). Thus we have a real function
f (j):

f (j)→
√

2 Im[T φout(j)] as j →∞. (6)
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For the square lattice with a boundary corresponding to the surface{100} or {110}, the
degeneracy is 2 or 4 depending on the energy. Thereby,T is a constant or a 2× 2 unitary
matrix. For the former case, the outgoing wavekµ is degenerate with the incoming wave
kα = −kµ; we have

T = eiθµ

whereθµ is the phase-shift [7]. For the latter case, two outgoing waveskµ and kν with
kµ 6= kν are degenerate with two incoming waveskα = −kµ andkβ = −kν ; the matrixT
is given by

T =
(
aeiθµ −beiθν

b∗eiθµ aeiθν

)
wherea is real,b = |b|eiθ with a2+ |b|2 = 1. The phaseθ reflects the effect of mixing of
two outgoing waves; ifθ = 0, there exists a real matrixR such thatRT is diagonal, so then
the wave functions can be transformed to the same form as for the former case. Generally,
under the influence of the surface effect, the mixing phaseθ does not vanish. Note that all
of the parametersa, b, andθ depend on the energyE. With the above analysis, one can get
explicit expressions for the asymptotic wave functions as given in references [4] and [5].

Due to the surface effect, the density of states of the free quasiparticles is changed from
that for the homogeneous system. In some cases, the total number of free states decreases.
There must be bound surface states. Since all of the states compose a set that is a complete
basis, their total number is the same as that of the homogeneous system. According to
Levinson’s theorem [6], the numberNb of bound surface states can be calculated from the
S-matrix:

Nb = [η(Emin)− η(Emax)]/π
η(E) = 1

2i
ln[det(S)]

whereη(E) is the eigen-phase-shift.
Having the boundary conditions, one can then solve the BdG equation. Since the

HamiltonianHij contains the order parameters which are in turn determined from the
solution to the BdG equation itself, we usually use the iteration method.

Recently, we have investigated the{100}- and {110}-surface effects in d-wave super-
conductors [4, 5]. The BdG equation has been solved self-consistently. For the{100}
surface [4], two obvious features of the order parameters has been found.

(1) The pairing parameters of bothx- andy-directions oscillate near the surface. This
seems like the Friedel oscillation. The length scale of such an inhomogeneity is about ten
lattice constants.

(2) Accompanying the oscillation, the d-wave symmetry is altered near the surface.
At the surface, they-direction pairing is suppressed to 60% of the bulk value, while the
x-direction pairing is enhanced by 10%.

We have also studied thea-axis Josephson tunnelling between high-Tc superconductors
[4]. With a model of tunnelling between the nearest-neighbour sites on the two interfaces,
we calculated the temperature dependence of the Josephson critical currentJ (T ). The
tunnelling current depends on the values of the wave functions at the surfaces. Since the
functions are of standing waves, their magnitudes at the surface are substantially different
from those of the plane waves. It is shown that our theoretical study is in very good
agreement with the experiments [8–10]. Throughout the whole superconducting region,
0< T/Tc < 1, the experimental results forJ (T )/J (0) are well represented by the present
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theory. The present result is also indistinguishable from our earlier ones [11]. In the earlier
calculation, we took the order parameters as constants even near the boundary. The BdG
equation was then solved exactly; the wave functions are the analytic sine functions. At
the boundary, as compared with those of the plane waves, the amplitudes of these standing
waves are suppressed in the ranges|kx | < π/4 and 3π/4 < |kx | < π , while they are
enhanced forkx in the rest of the range(−π, π). The fact that two calculations give results
that are almost the same implies that the main characteristic of the surface effect on the
tunnelling in the weakly linked junctions can be captured by the simple sine functions. Even
if it is based on the same tunnelling assumption, however, the prediction using plane-wave
functions is explicitly different from the present one, but seems like the conventional BCS
result. Obviously, the surface and thereby the interface effects are very much critical in the
phenomena of tunnelling between high-Tc superconductors.

In the system with a{110} surface, Hu has predicted that there exist midgap states bound
to the surface [12]. Since their density of states is sizable, these states contribute a peak to
the tunnelling conductance at zero bias voltage between a normal conductor and a d-wave
superconductor with the{110} interface. This prediction has been proved by experiments
[13]. Besides the midgap states, we have also found from our theory that there can appear
a number of surface states with non-zero energies [5]. The appearance of these states is
related to the suppression of the order parameter near the surface [14]. The amplitudes of the
order parameters for thea- andb-directions are the same, but are considerably suppressed
in a region of length∼70 lattice constants from the surface. In contrast to those of the
midgap states, their energies disperse with the momentum parallel to the surface. So, these
non-zero-energy bound surface states cannot result in peaks in the density of states as sharp
as those for the midgap states. However, an enhancement in the tunnelling conductance at
non-zero bias voltages (less than the pairing potential) can be expected in the junction with
a {110} interface of the high-Tc superconductor.

Due to the anisotropic pairing, the surface properties of the high-Tc superconductors may
depend sensitively on the surface orientation. It is therefore necessary to further investigate
the general surface problems.
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